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Abstract—Digital traces left by a user of an online social
networking service can be abused by a malicious party to
compromise the person’s privacy. This is exacerbated by the
increasing overlap in user-bases among various services. In this
paper, we propose an algorithm,Seed and Grow, to identify users
from an anonymized social graph based solely on graph structure.
The algorithm first identifies a seed sub-graph, either planted by
an attacker or divulged by collusion of a small group of users,
and then grows the seed larger based on the attacker’s existing
knowledge of the users’ social relations. Our work identifies and
relaxes implicit assumptions taken by previous works, eliminates Fig. 1. Each node represents a user, with the user’s ID athcdNaive
arbitrary parameters, and improves identification effectivenes anonymization simply removes the ID, but retains the netwarkctire.
and accuracy. Experiments on real-world collected datasets
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further corroborate our expectation and claim. such as your birth year or other sensitive personal infamat
Keywords-anonymity; privacy; social networks; topology. or pre_ferences) to select the appropriate audience forethos
advertisements”.
I. INTRODUCTION Due to the strong correlation between users’ data and the

A lunch-time walk across a university campus in the Unitedsers’ social identity, privacy is a major concern in deglin
States might lead one to marvel at the prevalence of Internétith social network data in contexts such as storage, psaces
based social networking services, among which Faceboi®i and publishing. Privacy control, through which a user ca
and Twitter are two big players in the business. Indeed, e the visibility of her profile, is an essential featureainy
Alexa’s “top 500 global sites” statistics retrieved on Ma312 major social networking service.
indicates, Facebook and Twitter rank at 2nd and 9th place,The common practice for privacy-sensitive social network
respectively. data publishing is through anonymization, i.e., removénpla

One characteristic of online social networking services igdentifying labels such as name, social security numbestgbo
their emphasis on users and their connections, rather ttane-mail address, and retain the structure of the network as
on content as traditional Web services do. These servicpgplished data. Figure 1 is a simple illustration of thisqeres.
while providing convenience to users, accumulate a treasfur The motivation behind such processing prior to data puinigsh
user-produced contents and users’ social connectionrpattgs that, by removing the “who” information, the utility of ¢h
which were only available to large telecommunication servi social networks is maximally preserved without comprongsi
providers or intelligence agencies a decade ago. users’ privacy. [1] reports several high-profile cases inciwh

Data from social networks, once published, are of gre&nonymity has been unquestioningly interpreted as etgriva
interest to a large audience. For example, with the massitze dto privacy”.
sets, sociologists can verify hypotheses on social strestand ~ Can the aforementioned “naive” anonymization technique
human behavior patterns. Third-party application devedsp achieve privacy preservation in the context of privacys#are
can produce value-added services like games based on usgrslal network data publishing? This interesting and irteodr
contact lists. Advertisers can more accurately infer a’sisequestion was posed only recently in [2]. A few privacy atgck
demographic and preference profile and can thus issueedrgdtave been proposed to circumvent the naive anonymiza-
advertisements. Indeed, the 22 December 2010 revisiontioh protection (e.g., [1][2]). Meanwhile, more sophistied
Facebook’s Privacy Policy has the following clause, “wewll anonymization techniques (e.g., [3][4][5][6][7]) have dme
advertisers to choose the characteristics of users who witbbposed to provide better privacy protection. Neverttgle
see their advertisements and we may use any of the no@search in this area is still in its infancy and a lot of work,
personally identifiable attributes we have collected (idatg both in attacks and defenses, remains to be done.
information you may have decided not to show to other users,In this paper, we describe a two-stage identification aftack



Seed-and-Grow against anonymized social networks. Thaumerous previous works (e.qg., [4][5][7][8]), are the psbéd
name suggests a metaphor for visualizing its structure adalta’sutility, and the attacker'sackground knowledge
procedure. The attacker first plantssaedinto the target  Utility of published data measures information loss and
social network before its release. After the anonymizea dafistortion in the anonymization process. The more infoiomat
is published, the attacker retrieves the seed and makgsvit that is lost or distorted, the less useful published data is.
larger, thereby further breaching privacy. Existing anonymization schemes (e.g., [3][4][5][7][8Feaall
More concretely, our contributions include: based on the trade-off between the usefulness of the peblish
« We propose an efficient seed construction and recovetgta and the strength of protection. For example, [7] prepos
algorithm (Section I1I-A). More specifically, we drop thean anonymization algorithm in which the original socialgra
assumption that the attacker has complete control overpartitioned into groups before publication, and “the twem
the connection between the seed and the rest of thienodes in each partition, along with the density of edges th
graph (Section IlI-Al); the seed is constructed in a wagxist within and across partitions”, are published.
which is only visible to the attacker (Section IlI-Al); the Although trade-off between utility and privacy is necegsar
seed recovery algorithm examines at most the two-hdtpis hard, if not impossible, to find a proper balance in gen-
local neighborhood of each node, and thus is efficiestal. Besides, it is hard to prevent attackers from proalstiv
(Section IlI-A2). collecting intelligence on the social network. It is espdyi
« We propose an algorithm which grows the seed (i.aglevant today as major online social networking services
further identifies users and hence violates their privacpyovide APlIs to facilitate third-party application devptoent.
by exploiting the overlapping user bases among sociBhese programming interfaces can be abused by a malicious
network services. Unlike previous works which relyparty to gather information about the network.
upon arbitrary parameters for probing aggressiveness, ouBackground knowledgeharacterizes the information in
algorithm automatically finds a good balance betweeRe attacker’s possession which can be used to compromise
identification effectiveness and accuracy (Section 1lI-B)rivacy protection. It is closely related to what is pereeivas
« We demonstrate significant improvements in identificarivacy in a particular context.
tion effectiveness and accuracy of our algorithm over The attacker's background knowledge is not restricted to
previous works with real-world social-network datasetge target's neighborhood in a single network, but may span
(Section 1V). multiple networks and include the target's alter egos inoéll
In light of the increasing overlapping user bases amonigese networks [1]. This is a realistic assumption. Comside
social network services, businesses and government &genttie status quo in the social networking service business,
should realize thaprivacy protection is not only an individual in which service providers, like Facebook and Flickr, offer
responsibility but also a social onegur work calls for a complementary services. It is very likely that a user of one
re-evaluation of the current privacy-protection pradide service would simultaneously use another service. As apers
publishing social-network data. registers to different social networking services, heriaoc
Il. BACKGROUND AND RELATED WORK con'nectiong in thesg services, which somehow relates to her
social relationships in the real world, might reveal valeab

~ Anatural mathematical model to represent a social netwogktormation which the attacker can make use of to threaten
is a graph. A grapldx consists of a set’ of vertices and a set ¢, privacy.

E CV xV of edges. Labels can be attached to both vertices-l-he above observation inspires “Seed and Grow”, which

anld eﬁges to reprgsent the'[) atmbéltlesa he knowled Exploits the increasingly overlapping user-bases amonlso
'nt IS contextprivacy can € modele as the knowle A etworking services. A concrete example is helpful in under
existence or absence of vertices, edges, or labels. Oneaspeé:[anding this idea

category is graph metrics, in which privacy is modeled, not i
terms of individual components of a graph (e.g., vertices), MOTIVATING SCENARIO. Bob, as an employee of a social
in terms of metrics that originate from social network asay networking service provider F-net, acquires from his ery@to
studies [9], such as betweenness, closeness, and cgntralita graph, in which vertices represent users and edges represe
The naive anonymization is to remove those labels whighivate chat logs. The edges are labeled with attributels asc
can be uniquely associated with one vertex (or a sméimestamps. In accordance with its privacy policy, F-nes ha
group of vertices) fromV. This is closely related to tra- removed the user IDs from the graph before giving it to Bob.
ditional anonymization techniques employed on relational Bob, being an inquisitive person, wants to know who these
datasets [10]. However, the additional information comeby users are. Suppose, somehow, Bob identifies 4 of these users
in edges and its associated labels opens up a new dimendiom the graph (this will become clear in the “Seed Construc-
of potential privacy breaches, from which the authors of [2lon” and “Seed Recovery” interludes in Section IlI-A). By
proposed an identification attack against anonymized grap$ing a graph (with the user ID tagged) he crawled a month
and coined the termstructural steganography ago from the website of another service provider T-net (the
Beside privacy, other dimensions in formulating privacy identified persons are also users of T-net), and by cayefull
attacks against anonymized social networks, as identified measuring structural similarity of these graphs, he maméme



identify 100 more persons from the anonymized graph from F- (2 )—

A\
net (the “Dissimilarity” interlude in Section I1I-B will lustrate A~ AN 1
. . . , 4 )——— 1 ‘“\\\‘/3\‘\\\
how to do this). By doing so, Bob defeats his employer's \/ ~ )
attempt to protect the customers’ privacy. ,f,{;)
\_/

We conclude this section with a brief comment on our
choice of model. We use anndirectedgraph to represent Fig. 2. A randomly generated graghi; may be symmetric. Vertices in
social networks, which arises naturally in scenarios whefé = {V1:-+-,vs} are double-circled.
the relation under investigation mutual e.g., friend requests
must be confirmed in Facebook. In contrastigectedgraph
is a natural model in other cases, e.g., a fan follows a movie
star in Twitter. Directed graphs reveal more informatiooub
the social relationships than their undirected countésp&y
considering undirected graphs, our results can be extended
without difficulty, to directed graphs.

o G is uniquelyidentifiable, i.e., no subgrapf C Gr
exceptGr is isomorphic toGr. For example, in Fig-
ure 2, subgrapRwvy,ve,v3} is isomorphic to subgraph
{v1,v4,v5} because there is a structure-preserving map-
ping v1 — wvy,vy — wv4,v3 — vs between them.
Therefore, they are structurally indistinguishable.

o« Gp is asymmetri¢ i.e., Gr does not have any non-
[1l. SEED AND GROW: THE ATTACK trivial automorphism. For example, in Figure 2, subgraph
{v1,v2,...,v5} has an automorphism; — vy,ve

V3, V3 > U4,V4 — Vs, U5 — V2.

This section studies an attack that identifies users from
an anonymized social graph. Let an undirected gr&gh= ) _ )
{Vr, Er} represent theargetsocial network after anonymiza- In practice, since the structure of o'Fher nodes in the nectwor
tion. We also assume that the attacker has an undirectet gr%)unknown to the attacker before its release, the uniquely
Gp = {Vp, Ez} which models hisbackground knowledge entlflab!e property is not real|z.able. However, as way@do
about the social relationships among a group of people (.8} [2], with a large enough size and ran.domly generated
Vg are labeled with the identities of these people). THAges under the Edd-Renyi model [12],G will be uniquely
motivating scenario demonstrates one way to ob@jn The identifiable with high probability. _ _
attack concerned here is to infer the identities of the vesti Although a randomly generated gragh- is very likely to
Vi by considering structural similarity betweé® and G 5. be uniquely identifiable iz, it may violate the asymmetric

We assume thatbefore the release ofGr, the attacker structural property. However, because the goal of seed is
obtains (either by creating or stealing) a few accounts affj identify the initial seedVs rather than the flagzr, the
connects them with a few other users @ (e.g., chatting asymmetric requirement fai - can be relaxed. For € Vs,
in the motivating scenario). The attacker does not need muéh Vr(u) be the vertices inVe which connects withu
effort to do this because these are only basic operations il k#(«)| > 1 by the definition ofVs). For each pair of
social networking service. Besides user ID, the attackenen Vertices, say. andv, in Vs, as long ad/r(u) and Vi (v) are
nothing about the relationships between other user&jn distinguishable inG'r (e.g., |Vr(u)| # [Vr(v)| or the degree
Furthermore, unlike previous works, wip not assume that Sequences are different; more precisely, no automorphism o
the attacker has complete control over the connectidress Gr €Xists which maps/k(u) to Vip(v)), and onceGr is
just knowsthem beforeG's release. This is more realistic.fécovered fromG'r, Vs can b? identified uniquely. _
An example is a confirmation-based social network, in which Based on these observations, we propose the following
a connection is established only if the two parties confirm #ethod for constructing and recoverifg..

the attackecan decline but not imposa connection. 1) Construction: The construction ofyr starts with astar
In contrast to a pure structure-based vertex matching algructure. We call the vertex at the center of the starhied
rithm [11], Seed-and-Grow is &vo-stagealgorithm. of Gr and denote it byv,. In other words,u, connects to

The seedstage plants (by obtaining accounts and estafVery other vertices iiz and no others.
lishing relationships) a small specially designed subgrap The vertices inVr — {v,} are connected with some other
Gr = {Vp,Ep} C Gr (Gp reads as “flag” or “fingerprint”) vertices Vs (the initial seed) inGr, which the attacker has
into G before its release. After the anonymized graph 130 complete control over (he can only ensure thatu) #
released, the attacker locatés- in Gr. The neighboring Vr(v) for any pair of vertices: andv from Vg by declining
verticesVg of G in Gr are readily identified and serve astonnections which render indistinguishable verticed/i).
aninitial seedto be grown. As discussed before, the attacker has to ensure that no
Thegrow stage is essentially comprised of a structure-bas@dtomorphism ofzr will map Vi (u) to Vi (v). Therefore, he
vertex matching, which further identifies vertices adjaden first connects pairs of vertices I — {v, } with a probability
the initial seedVs. This is a self-reinforcing process, in whichof p (in the fashion of the Eras-Renyi model). Then, he

the seed grows larger as more vertices are identified. collects theinternal degreeDr(v) for everyv € Vp — {vp}
(i.e., v's degree inGg rather than inGr; henceinternal
A. Seed degree) into arorderedsequenceSp.
Successful retrieval ofzr in Gp is guaranteed ifGg Now, for everyv € Vg, v has a corresponding subsequence

exhibits the following structural properties. Sp(v) of Sp according to its connectivity withVz. For



Algorithm 1 Seed construction.

1: CreateVp = {vp,v1,v2,...}.

2: Given connectivity betweelr and Vs.
3: Connectuy, with v for all v € Ve — {vp}.
4: loop

5. for all pairsv, # v, in Vg — {v,} do
6:

7

8

Connectv, andwv, with a probability ofp.

end for

: forall we Vs do
9: Find Sp (u)
10:  end for Fig. 3.  An illustration of the seed stage. Vertices in the flag =
11: if SD(u) are mutually distinct for alk € Vs then {vp,v1,...,v6} are doubl_e-circled. The ordered internal degree sequence
12: return Sp = (2,2,2,3,3,4). The internal degree subsequence for the neighboring
13 end if verticesVs = {’U7, .. .,’U10} of GF areSD(_v7) = <2>, SD (’Ug) = <2., 2'>,
14: end loop Sp(vg) = (3,3,4), andSp (vio) = (2, 3). Since they are mutually distinct,

Vs can be uniquely identified ong@f is recovered.

SEED RECOVERY.

example, in Figure 2ps connects tovs and vs from Gp; Bob started '_[0 check th(_a _anonymized gra@b to find the
since Dy (v3) = Dp(vs) = 1, Sp(vg) = (1,1). As long as flag. He did this by examining all of the_ vertices (rp f_or
Sp(u) # Sp(v) for u andv from Vg, no automorphism ofy;  ON€ with degr.e@ After_ he reachgd a_andldatg head. with
will map Vi (u) to Vi (v). Therefore, the attacker guaranteedegreeo, he isolated it along with its candidate flag graph
unambiguous recovery dfs by ensuring that the randomly(red in Figure 3), and the internal degrees for each of the
connectedGp satisfies this condition. If not, the attacke€ighbors. He found that the ordered internal degree segquen
will simply redo the random connection among — {v,} §2,2,2,3,3,4> match with t.hat ofVr. He then procegded to
until it does (which it eventually will since we assume thafolatev.’s exact 2-hop neighbors and checked their ordered
Vir(u) # Vi (v) for any pairu andv from Vs). Algorithm 1 internal degree subsequences with the candidate@lagHe
summarizes this procedure. found they again matched with those 6§.

Bob was convinced that he had fou6d-. By matching the
SEED CONSTRUCTION  Bob had created 7 accounts and  orgered internal degree subsequence®,ofhe identifiedvr,
ULy U6y 1€ Ve. H_e first connectedy, with vy,... vg. vs, vg andvy. For example, for a 2-hop neighbar € V,,
After a while, he noticed that userg to v;o are connected yhich is connected with three 1-hop neighbors with internal

with vy, ..., ve, i.e., Vg = {v7,...,v10}. degrees 3, 3 and 4, he identifiadwith vy.

Then, he randomly connected,...,vs and got the re- o . . .
sulting graphG » as shown in Figure 3. The ordered internal The motivation for !ncorporat!ng the head vertex technique
degree sequencgp = (2,2,2,3,3,4). in the seed construction stage is clear now. The only connec-

Bob found Sp(v7) = (2), Sp(vs) = (2,2), Sp(ve) = tions v;, has areinternal ones. Therefore, once a candidate
(3,3,4), and Sp(v10) = (2,3). Since they are mutually head vertexu is found, the candidate flag can be readily

distinct, Bob was sure that he could identify to v, once détermined by reading off the 1-hop neighborhood «of
V- was found in the published anonymized graph. Thergaft_er, no probing or backtracking is needed for finding
Gr like in [1] and [2].

The degree of head vertey,, the ordered internal degree The efficiency of the algorithm is evident by observing that,
sequenceSp and the subsequences chosen ¥gr are the jn Algorithm 2, the maximal level of nested loops is 3 (2
secretsheld by the attacker. As shown in Section IlI-A2of them are on a vertex's neighborhood) and no recursion is
these secrets are used to recoggs from G and thereafter jnolved. Because the 2-hop neighborhoodugf(e.g., Vi U
to identify Vs. From the defender's point of view, withoutys) is controlled by the attacker (as secrets), if the size, (i.e

knowing the secrets, there is no structure which charaeteri the number of vertices) of the 2-hop neighborhoodvisthe
Gr due to the random nature in seed construction. Therefoggmplexity of the recovery algorithm i9(N|Vr|).

G is visible only to the attacker

2) Recovery:OnceGr has been successfully planted an®- Grow
Gr is released, the recovery @fr from G consists of a  The initial seed provides a firm ground for further identifi-
systematic check of the attacker's secrets. The first stepciion in the anonymized graph;. Background knowledge
to find a candidate: for the head vertex,, in Gr by degree Gy comes into play at this stage.
comparison. Then, the ordered internal degree sequenbe of t We have a partial mapping betweéiy and G, i.e., the
candidate flag graph (i.e., 1-hop neighborhoodupfand the initial seedVs in G maps to its corresponding identities in
subsequence secret of the candidate initial seed (i.ect exdp. Two examples of partial graph mappings are the Twitter
2-hop neighborhood ofi) are checked. If the candidate flagand Flickr datasets [1] and the Netflix and IMDB datasets.[14]
graph passes these secret checks, it is identified&jthand The straightforward idea of testing all possible mappinys f
its neighbors are identified witls by subsequence secrethe rest of the vertices has an exponential complexity, kwlsc
comparison. Algorithm 2 has the details. unacceptable even for a medium-sized network. Besides, the



Algorithm 2 Seed recovery. Target Background

1. for all u € Gr do

2. if deg(u) = |Vr| —1 then

3: U <+ exact 1-hop neighborhood af u

4: for all v € U do

5: d(v) < number ofv's neighbors inU U {u} / | \\ \

6: end for 13 14 15 16

7 s(u) « sort(d(v)v € U)

8: if s(u) =Sp then

9: V + exact 2-hop neighborhood af Fig. 4. An illustration of the grow stage. Vertices in thetiai seedVg =

10: for all we V do {v7,...,v10} are double-circled. Those vertices in the target graghwith

11: U(w) + w's neighbors inl/ labels _starti_ng w_ith an asterigk are yet to be identified. s of the grow

12: s(w) « sort(d(v)|v € U(w)) stage is to identify these vertices.

12 ﬁng(fgr)‘w € V) = (Sp(v)|v € Vi) then in which |- | is the number of set elements, i.e., set cardinality.
15: {w € V is identified withv € Vs if s(w) = Sp(v)} We haveAr(u.,viz) = {ur, us}|/{ur, us,uo}| = 2/3 =

16: end if 0.667, andAB(u*l,vlg) = ‘{U10}|/|{’U9,’010}| = 1/2 = 0.5.

17: end if Arp(u,v) and Ag(u,v) together measure how different

igi eng’}gr'f andv’s mapped neighborhoods are. By its definition in Equa-

tions 1 and 2, botAr(u,v) and Ag(u,v) are in the range

of [0,1]. More precisely, when their mapped neighborhoods
are the sameNL(u) = NPB(v)), we have Ar(u,v) =
overlapping betweeit:; and Gg may well bepartial, so @ Ap(u,v) = 0, which means that: and v match perfectly
full mapping is either impossible or undesirable. Thereforgy regard to their mapped neighborhoods. Otherwise, when
the grow algorithm adopts a progressive and self-reinfigrci A7 () N A B(v) = 0, Ap(u,v) = Ap(u,v) = 1. The reason
strategy, mapping multiple vertices at a time. to have two asymmetric metrics (in regard to the target and

Figure 4 shows a small example; to v1o have already background graphs) instead of a symmetric one is that we want
been identified in the seed stage (recall Figure 3). The taskd choose those mappings which are the mutually best choices
to identify other vertices in the target graphy. for the graphs. Again, a concrete example helps.

The grow algorithm centers around a pair di§similarity 1) Dissimilarity.: Bob first identified the tuples in Table |
metrics between a pair of vertices from the target and théhich has the smallegir andA g in both its row and column.
background graph respectively. In order to enhance the-idén this case, these tuples afe.;,v11) and (u.s, v12). Since
tification accuracy and to reduce the computation complexithey arefrom different rows and columnghey do not conflict
and the false-positive rate, we introducegeeedy heuristic with each other. So Bob decided to map, to v1; andu.s
with revisiting into the algorithm. to v1a.

It is natural to start with those vertices @y which connect  He then added,; < v1; andv,s < v to the seed and
to the initial seedVs because they are more close to th&woved on to the next iteration of identification.

certaininformation, i.e., the already identified verticEs. For 2) Greedy Heuristic:Bob’s story suggested a way of using
these vertices, their neighboring vertices can be diviggd i {0 dissimilarity metrics defined in Equations 1 and 2 to
two groups. Namely, for such a vertex its neighborhood in iteratively grow the seed.

Gr is composed ofVE (u) (mappedneighbors) a;‘d%[(“) Since smaller dissimilarity implies better match, we idgnt
(unmappedﬂelghb%rs). For instance, in Figure &, (u.1) = those tuples in the table like Table | which hemallestA
{ur, us, uo} ANAN;/ (us1) = {usa}. and Ap in both its row and column; these tuples are the

For the background grapfip, we can make similar defi- mytyally best matches from/to the target graph to/from the
nitions. Suppose the seéd C Vi maps toVg C Vp. For a packground graph. We then add the mappings corresponding
V¢’s neighboring vertew, let V7 (v) bev’s neighbors iV, g these tuples to the seed and move on to the next iteration.
and let\;? (v) be the other (i.e., unmapped) neighbors. Hence,we gloss over a subtlety in the above description: if there
in Figure 4,N7 (v12) = {vg, vio} andN 7 (v12) = {v11,vi6}.  are conflictsin choice, i.e., there are more than one tuples

We identify the mapped vertices ils and Vg so that satisfying the above criterion in a row or a column, which

N (i) = NP (v12) = {uz,ug} = {vr,vs} in Figure 4. one shall we choose? Rather than randomly selecting a tuple,
For a pair of nodesy € Vr andv € Vg, we define the we select the tuple thattands outand add the corresponding
following pair of dissimilarity metrics: match to the seed. If there is still a tie, these tuples are

AT AP reckoned as indistinguishable under the dissimilarityrivgt
Ar(u,v) = [N () = Noy (”)|’ (1) To reduce incorrect identifications, we refrain from adding
N ()] mapping to the seed in these scenarios.
and: DISSIMILARITY Bob applied the dissimilarity metrics de-

Ap(u,v) = INB(v) — NE(u)] @ fined in Equations 1 and 2 to Figure 4 and got the results
B Y= INB(v)] ’ shown in Table I.




TABLE |

Algorithm row.
DISSIMILARITY METRICS FOR PAIRS OF UNMAPPED VERTICES IN gO t 3 G 0

FIGURE 4. EACH TUPLE CONSISTS OF AAp, Ag) PAIR. 1: Given the initial seed’s.
22.C=90
A Ux1 Ux2 Ux3 3 |00p

4:  Cr « {u € Vp|u connects toVs }
5. Cp <+ {v € VgJv connects toVs}
6' if (Cr,Cp) € C then

. . . . return V.
This boils down to the question of how to quantify the& end if 5

concept of “a tuple standing out among its peers”. We define: ¢ « c U {(Cr,Cs)}
aneccentricitymetric for this purpose in our algorithm. L&t  10:  for all (u,v) € (Cr,Cg) do

be a group of numbers (the same number can occur multléﬂe ComputeAr (u, v) and Ap(u, v).
times). Theeccentricityof a hnumberz € X is defined as: end for

v11 | (0.00,0.00) (0.00, 0.33) (0.50, 0.67)
vi2 | (0.67,0.50) (0.50, 0.50) (0.00, 0.00)

13: S + {(u,v)|Ar(u,v) and Ap(u,v) are smallest among
Ax(z) : conflicts}
Ex(z) = a(X)X#X(m) !f o(X) #0 . (@) 14 forall (u,v) € Sdo
0 if o(X)=0 15: if (u,v) has no conflict inS or (u,v) has the uniquely
. . ) ] ) largest eccentricity among conflicts f1then
in which Ax (z) is the absolute difference betweerand its 16: Vs + Vs U{(u,v)}
closestdifferentvalue in X; #x(z) is the multitudeof z in  17: end if

X, i.e., the number of elements equal #oin X; o(X) is 18 end for
the standard deviation oX. The larger€x (z) is, the morez 19: end loop
stands out among .

Therefore, if there are conflicia a row, these tuples have
the same\; and A 5. For each such tuple, we collect the,  and 72 million links. The links are directed. As previously
andAp in the same columimto X7 and X 5 respectively and discussed at the end of Section I, we conducted the experi-
compute€y.,. (A7) andEx,, (Ap). If there is auniquetuple ments with the more difficult setting of an undirected graph.
with the largestEx, (A7) andEx, (Ag), we pick it and add We retained an undirected link between two vertices if there
the corresponding mapping to the seed; otherwise, no mgppitas a directed link in either direction.
is added to the seed. The other datasegmai | Week?, consists 0200 vertices

3) Revisiting: The dissimilarity metric and the greedyandl,676 links. This dataset, by its nature, is undirected.
search algorithm for optimal combination are heuristic in Using datasets collected from different underlying social
nature. At an early stage with only a few seeds, there might Betworks helped to reduce bias induced by the idiosyncrasy
quite a few mapping candidates for a particular vertex in té a particular network in performance measurements.
background graph; we are very likely to pick a wrong mapping The performance of the grow algorithm was measured by
no matter which strategy is used in resolving the ambigtifity. its ability to identify the anonymous vertices in the target
left uncorrected, the incorrect mappings will propagatedlgh  graph. We derived the target and background graphs from each
the grow process and lead to large-scale mismatch. dataset and used their shared vertices asgtband truthto

We address this problem by providing a way to re-examirigeasure against.
previous mapping decisions given new evidences in the growMore precisely, we derived the graphs with the following
algorithm; we call thisrevisiting More concretely, for each procedure. First, we chose a connected subgraph With
iteration, we consider all vertices which have at least @eals vertices from the dataset, which served aghared portionof
neighbor, i.e., those pairs of vertices on which the didsirty the background and target graphs. We then picked other two
metrics in Equations 1 and 2 are well-defined. sets of vertices (different from the previod&, vertices) with

We expect the revisiting technique will increase the acuralNs — Nn and Ny — N, vertices, respectively, and combined
of the algorithm. The greedy heuristic with revisiting igvith shared portion graph to obtain the background graph

summarized in Algorithm 3. (with Np vertices) and the target graph (wifki; vertices).
After this, Ng (Ns < N and not necessarily connected)
IV. EXPERIMENTS vertices were chosen from the shared portion to serve as

We conducted a comparative study on the performancetbg initial seed. Finally, random edges were added to the
the Seed-and-Grow algorithm by simulation on real-worlthrget graph to simulate the difference between the tamggt a

social network datasets. background graphs.
A. Setup B. Seed

We used two datasets collected from different real-world The Seed construction (Algorithm 1) and recovery (Algo-
social networks in our study. rithm 2) algorithms ensure that, once the flag graph is

ThelLi vej ournal dataset, which was collected from thesuccessfully recovered, the initial se&d can be unambigu-
friend relationship of the online journal service, Livedai,

on 9-11 December 2006 [15], consistssaf million vertices  Ihttp:/Avww.infovis-wiki.net/index.php/SociaNetwork Generation.



TABLE I

THE ESTIMATE OF ESSENTIALLY DIFFERENT CONSTRUCTIONS FOR A RG To account for the bigs on the performance measurement
GRAPHG f WITH 7 VERTICES PRODUCED BYALGORITHM 1. of a particular graph setting, for each target/backgrouagbty
pair, we ran multiple simulations with different initial esgs

n 10 11 12 13 and took the average as the performance measurement. We

estimate| 1.89 x 106 9.70 x 107  9.03 x 108  1.54 x 1011

focused our simulations on graphs with hundreds of ver-

ously identified. Therefore, the seed construction depends i€S: Which are big enough to make the identification non-
Gr being uniquely recovered from the released target grap}ﬁ'.v'al' More precisely, we choseNc - 4OQ + Ns, Nr =

We randomly generated a number of modest-sized f:ﬁgﬁ] + Ns,Np = 600 + Ns) for Livejournal and
graphs with 10 to 20 vertices and planted them into the'C — 100 + N, Ny = 125 4 Ng, Np = 125_+N5) for
Li vej our nal dataset with Algorithm 1. We were able to_ernau_l Week. In other words,_ the_ ideal result is to correctly
uniquely recover them from the resulted graph with Algddentify 400 + Nis nodes forLi vej our nal and100 + N
rithm 2 without exception. nodes foremai | Week where Ny is the size of initial seed.

To explain this result, we made the following estimation 1) INitial Seed Size:Recent literature (e.g., [16]) on
on the number of essentially different (i.e., with differeninteraction-based social graphs (e.g., the social graptmen

ordered internal degree sequer®g) constructions produced Motivating scenario) singles out the attacker's intemcti
by Algorithm 1. budget as the major limitation to attack effectiveness. The

For a flag graptG » with n vertices, there are — 1 vertices limitation translates to 1) the initial seed size and 2) the
beside the head node,. There are(;z ~1)(n — 2)/2 pairs number of links between the flag graph and the initial seed.

among then — 1 vertices; the edge between each pair dpur seed algorithm resolves the latter issue by guaramfeein

vertices can be either present or absent. Therefore, there Y'ampiguous identification of the initial seed regardldssk
2(n=1)(n=2)/2 different flag graphs. numbers. As shown below, our grow algorithm resolves the
However, some of them are considered the same by Aprmer issue by working well with a small initial seed.

gorithm 1. For example, the ordered internal degree sequenc':ig“re 5 shows the grow performance with different initial
Sp = (2,2,2,3,3,4) in Figure 3. There arg, 2, and1 vertices seed sizes. To simulate the more realistic case that thettarg

with an internal degree of, 3, and 4, respectively: hence, and background graphs are from different sources and there-

there are(g) (:;) G) different flag graphs with the same ordereéore might differ even among the same group of vertices, we
internal degrees sequence. introduced aredge pertgrbatlomf 0.5%, i.e., we added.5%

For any ordered internal degree sequeisbg, there are Of the all of the edges in the target graph.
at most (n;l) (nIQ) (?) G) = (n — 1)! flag graphs with We note a few points for F|gure 5 o o
n vertices. The ordered internal degree sequence divides alf)- More nodes are correctly identified with increasingatit
flag graphs into equivalent classes. Therefore, the numberS§€d size for both Seed-and-Grow and Narayanan.

essentially different constructions produced by Algarith is: ~ 2)- Seed-and-Grow is better (or at least comparable) to
(ne1)n—32)/2 the aggressive Narayanan in terms of number of correct
2 n— n—

identifications and is superior when comparing with conserv
(n—1)! tive Narayanan. Foki vej our nal , conservative Narayanan

Table Il shows this estimate for a few different flag grapRtops almost immediately (the correct identification stats
sizes. From this, we can understand the reason for the hg}own in Figure 5 include the initial seed). In contrast,neve
probability for successful flag graph recovery, even in gdar for very small initial seed of 5 nodes, Seed-and-Grow cdiyec
graph likeLi vej our nal with 5.2 x 10 vertices: there are identifies an average of 32 nodes fdrvej our nal and 62
so many ways to construct essentially different flag graphshodes foremai | eek while only incorrectly identifying 1

node on average.
C. Grow 3). Though aggressive Narayanan correctly identifies more

We compared our grow algorithm with the one proposed modes as the seed size grows, the number of incorrect
Narayanan et al. [1]. There is a mandatory threshold paemmetdentification grows accordingly. This is especially evitle
which controls the probing aggressiveness, in their algari in Li vej our nal . In contrast, the incorrect identification
Lacking a quantitative guideline to choose this parameater mumber for Seed-and-Grow remains constanetimi | \Week
[1], we experimented with different values and found thagnd grows very slowly irLi vej our nal ; in either case, the
with increasing threshold, more nodes were identified bpercentage of correct identification, as defined by the numbe
the accuracy decreased accordingly. Therefore, we used wfocorrect identifications over the total number of identifie
different thresholds, which established a performancelepe nodes, is much higher for Seed-and-Grow than for aggressive
for the Narayanan algorithm. The result was two variantsef t Narayanan.
algorithm: an aggressive one (with a threshold)®001) and An ideal grow algorithm should be both effective and
a conservative one (with a threshold 9f The difference lay accurate. Effectiveness is measured by the number of ¢orrec
in the tolerance to the ambiguities in matching: the aggressidentification; accuracy is measured by the percentage of
one might declare a mapping in a case where the conservatieerect identification. Figure 5 shows Seed-and-Grow is 1).
one would deem as too ambiguous. comparable to aggressive Narayanan in terms of effectbgene
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Fig. 5. Grow performance with different initial seed sizeheTSeed-and-Grow (sng) algorithm is compared with two végiahthe identification algorithm
presented in [1]: “aggressive” (nar a; with a threshold ®f001) and “conservative” (nar c; with a threshold bf An edge perturbation df.5% is introduced
to simulate a more realistic scenario. (a), (b), and (c) ammftd vej our nal ; (d), (e), and (f) are fronenai | \eek.

while better in terms of accuracy; 2). comparable to consedentifications than correct ones. In contrast, the numifer o
vative Narayanan in terms of accuracy while better in terniscorrect identifications for Seed-and-Grow remain almost
of effectiveness. constant with different perturbation percentages.

It is arguable that, with a “proper” threshold, Narayanan A high accuracy (i.e., a high percentage of correct identifi-
will show the same or even superior performance than Seggtions) is desirable, even at a reasonable cost of eféeetas
and-Grow. However, lacking any quantitative guidelinegisa  (fewer nodes identified). This is because, lacking the knowl
proper threshold is hard, if not impossible, to find for thetvaedge about whether or not an identification is correct, amyur
array of graphs the identification algorithm applies to.fEife corresponds to the usecsnfidencen the identification result.
one can find such a threshold, it is unclear that its perfoo@anFor example, in Figure 6¢, even though aggressive Narayanan
will be superior to that of Seed-and-Grow. In contrast, Seedorrectly identifies 109 nodes on average while Seed-and-
and-Grow has no such arbitrary parameter. The point is tt@iow only correctly identifies 70 nodes on average, the
Seed-and-Growutomaticallyfinds a sensible balance betweefformer incorrectly identifies 128 nodes on average while the
effectiveness and accuracy. latter only incorrectly identifies 20 nodes on average. With

2) Edge Perturbation:The impact of edge perturbations orknowing which nodes are correctly identified, a user has less
the grow performance is shown in Figure 6. The initial segtian 50% confidence in the results of aggressive Narayanan
size was 15. while having more than 75% confidence in the results of Seed-

Correct identifications decreased with a larger edge pert@nd-Grow.
bation percentage for all algorithms. Incorrect identifmas  On reflection, we attribute the relatively high accuracy
increased with edge perturbation for aggressive NarayarsfinSeed-and-Grow to the conservative design in our grow
while remaining at a constant level for Seed-and-Grow argdgorithm (Algorithm 3). More specifically, we add a mapping
conservative Narayanan. to the seed (i.e., grow the seed) if and only if 1) it is

Seed-and-Grow is more effective than conservative Nartiie mutually best choice for the pair of nodes under the
yanan in all settings. Although aggressive Narayanan iematissimilarity metric and 2) it stands out among alternative
effective than Seed-and-Grow for larger perturbation pechoices in the sense that it has no tie under the eccentricity
centage, it comes at a much higher cost in accuracy; faoretric. Besides, the algorithm further improves accuragy b
Li vej our nal , aggressive Narayanan makes more incorreavisiting earlier mappings in light of new mappings.
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V. CONCLUSION [4]

We propose an algorithngeed-and-Growto identify users
from an anonymized social graph. Our algorithm exploits thé]
increasing overlapping user-bases among services andes ba
solely on social graph structure. The algorithm first ickedi  [6]
a seed sub-graph, either planted by an attacker or divulged b
collusion of a small group of users, and then grows the seq
larger based on the attacker’s existing knowledge of thesuse
social relations. We identify and relax implicit assumpgo
for unambiguous seed identification taken by previous Workgsl
eliminate arbitrary parameters in grow algorithm, and demo
strate the superior performance over previous works ingerm®l
of identification effectiveness and accuracy by simulation [10]
real-world-collected social-network datasets.

In the future, we plan to incorporate tagging (known mapﬁl]
pings from external information) into our structural-béise
grow algorithm, which we expect will further increase ident

fication effectiveness and accuracy. (12]
[13]
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